Constructing Diverse Classifier Ensembles using Artificial Training Examples
نویسندگان
چکیده
Ensemble methods like bagging and boosting that combine the decisions of multiple hypotheses are some of the strongest existing machine learning methods. The diversity of the members of an ensemble is known to be an important factor in determining its generalization error. This paper presents a new method for generating ensembles that directly constructs diverse hypotheses using additional artificially-constructed training examples. The technique is a simple, general metalearner that can use any strong learner as a base classifier to build diverse committees. Experimental results using decision-tree induction as a base learner demonstrate that this approach consistently achieves higher predictive accuracy than both the base classifier and bagging (whereas boosting can occasionally decrease accuracy), and also obtains higher accuracy than boosting early in the learning curve when training data is limited.
منابع مشابه
Creating diversity in ensembles using artificial data
The diversity of an ensemble of classifiers is known to be an important factor in determining its generalization error. We present a new method for generating ensembles, Decorate (Diverse Ensemble Creation by Oppositional Relabeling of Artificial Training Examples), that directly constructs diverse hypotheses using additional artificially-constructed training examples. The technique is a simple...
متن کاملA genetic approach for training diverse classifier ensembles
Classification is an active topic of Machine Learning. The most recent achievements in this domain suggest using ensembles of learners instead of a single classifier to improve classification accuracy. Comparisons between Bagging and Boosting show that classifier ensembles perform better when their members exhibit diversity, that is commit different errors. This paper proposes a genetic algorit...
متن کاملBagging and Boosting for the Nearest Mean Classifier: Effects of Sample Size on Diversity and Accuracy
In combining classifiers, it is believed that diverse ensembles perform better than non-diverse ones. In order to test this hypothesis, we study the accuracy and diversity of ensembles obtained in bagging and boosting applied to the nearest mean classifier. In our simulation study we consider two diversity measures: the Q statistic and the disagreement measure. The experiments, carried out on f...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملClassifier ensembles for image identification using multi-objective Pareto features
In this paper we propose classifier ensembles that use multiple Pareto image features for invariant image identification. Different from traditional ensembles that focus on enhancing diversity by generating diverse base classifiers, the proposed method takes advantage of the diversity inherent in the Pareto features extracted using a multi-objective evolutionary Trace Transform algorithm. Two v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003